86 research outputs found

    Knowledge-based support in Non-Destructive Testing for health monitoring of aircraft structures

    Get PDF
    Maintenance manuals include general methods and procedures for industrial maintenance and they contain information about principles of maintenance methods. Particularly, Non-Destructive Testing (NDT) methods are important for the detection of aeronautical defects and they can be used for various kinds of material and in different environments. Conventional non-destructive evaluation inspections are done at periodic maintenance checks. Usually, the list of tools used in a maintenance program is simply located in the introduction of manuals, without any precision as regards to their characteristics, except for a short description of the manufacturer and tasks in which they are employed. Improving the identification concepts of the maintenance tools is needed to manage the set of equipments and establish a system of equivalence: it is necessary to have a consistent maintenance conceptualization, flexible enough to fit all current equipment, but also all those likely to be added/used in the future. Our contribution is related to the formal specification of the system of functional equivalences that can facilitate the maintenance activities with means to determine whether a tool can be substituted for another by observing their key parameters in the identified characteristics. Reasoning mechanisms of conceptual graphs constitute the baseline elements to measure the fit or unfit between an equipment model and a maintenance activity model. Graph operations are used for processing answers to a query and this graph-based approach to the search method is in-line with the logical view of information retrieval. The methodology described supports knowledge formalization and capitalization of experienced NDT practitioners. As a result, it enables the selection of a NDT technique and outlines its capabilities with acceptable alternatives

    Conceptual graph-based knowledge representation for supporting reasoning in African traditional medicine

    Get PDF
    Although African patients use both conventional or modern and traditional healthcare simultaneously, it has been proven that 80% of people rely on African traditional medicine (ATM). ATM includes medical activities stemming from practices, customs and traditions which were integral to the distinctive African cultures. It is based mainly on the oral transfer of knowledge, with the risk of losing critical knowledge. Moreover, practices differ according to the regions and the availability of medicinal plants. Therefore, it is necessary to compile tacit, disseminated and complex knowledge from various Tradi-Practitioners (TP) in order to determine interesting patterns for treating a given disease. Knowledge engineering methods for traditional medicine are useful to model suitably complex information needs, formalize knowledge of domain experts and highlight the effective practices for their integration to conventional medicine. The work described in this paper presents an approach which addresses two issues. First it aims at proposing a formal representation model of ATM knowledge and practices to facilitate their sharing and reusing. Then, it aims at providing a visual reasoning mechanism for selecting best available procedures and medicinal plants to treat diseases. The approach is based on the use of the Delphi method for capturing knowledge from various experts which necessitate reaching a consensus. Conceptual graph formalism is used to model ATM knowledge with visual reasoning capabilities and processes. The nested conceptual graphs are used to visually express the semantic meaning of Computational Tree Logic (CTL) constructs that are useful for formal specification of temporal properties of ATM domain knowledge. Our approach presents the advantage of mitigating knowledge loss with conceptual development assistance to improve the quality of ATM care (medical diagnosis and therapeutics), but also patient safety (drug monitoring)

    Neurodegeneration in tauopathies and synucleinopathies

    Get PDF
    While increasing life expectancy is a major achievement, the global aging of societies raises a number of medical issues, such as the development of age-related disorders, including neurodegenerative diseases. The three main disease groups constituting the majority of neurodegenerative diseases are tauopathies, alpha-synucleinopathies and diseases due to repetitions of glutamine (including Huntington's disease). In each neurodegenerative disease, the accumulation of one or more aggregated proteins has been identified as the molecular signature of the disease (as seen, for example, in Alzheimer's disease, Parkinson's disease, dementia with Lewy bodies, amyotrophic lateral sclerosis and frontotemporal dementia). The etiology of neurodegenerative diseases is often multifactorial, and the known risk factors include, in addition to genetic polymorphisms and age, some other possible causes, such as certain immune and metabolic conditions, endocrine pathologies, gender, socioeconomic or professional status, oxidative stress or inflammation, vitamin deficiencies and environmental factors (chemical exposure, metals). However, innovative strategies to elaborate suitable diagnostic and therapeutic approaches (aiming to at least delay or possibly even reverse disease progression) require further knowledge of the genetic and adaptive immunological characteristics of neurodegenerative diseases

    Optimizing construction of scheduled data flow graph for on-line testability

    Get PDF
    The objective of this work is to develop a new methodology for behavioural synthesis using a flow of synthesis, better suited to the scheduling of independent calculations and non-concurrent online testing. The traditional behavioural synthesis process can be defined as the compilation of an algorithmic specification into an architecture composed of a data path and a controller. This stream of synthesis generally involves scheduling, resource allocation, generation of the data path and controller synthesis. Experiments showed that optimization started at the high level synthesis improves the performance of the result, yet the current tools do not offer synthesis optimizations that from the RTL level. This justifies the development of an optimization methodology which takes effect from the behavioural specification and accompanying the synthesis process in its various stages. In this paper we propose the use of algebraic properties (commutativity, associativity and distributivity) to transform readable mathematical formulas of algorithmic specifications into mathematical formulas evaluated efficiently. This will effectively reduce the execution time of scheduling calculations and increase the possibilities of testability

    Adverse drug reactions in some African herbal medicine: literature review and stakeholders' interview

    Get PDF
    Revue non indexée dans le JCR.International audienceBackground: In view of the large consumption of herbal medicine in Africa countries, it is likely that many adverse drugs reactions go unrecorded with either patients failing to present to health services, or no pharmacovigilance analysis being made, or the analysis not being reported centrally. This problem is of interest especially for those who are working in the general area of adverse drug reactions or stakeholders in the domain of herbal medicine for considering safety issues. Methods: We are particularly interested in the way that the use of very wellknown and highly valued plants is linked to the observation of adverse drug reactions in African countries. We investigated, through a literature review and using the Internet (with a semantic search strategy), some wellknown or popular medicinal plants used in African herbal medicine (AHM). Other information on the properties related to use, and characteristics of medicinal plants was complemented by some interviews with stakeholders. Results: Although substantial progress has been made in elucidating the mechanisms of action of many drugs, the pharmacological actions of many medicinal plants are generally not well understood. The results of a literature review suggest that the reported adverse drug reactions of herbal remedies are often due to a lack of understanding of their preparation and appropriate use. The results of stakeholders' interviews suggest that there is a growing need to provide patients with correct information about the herbal medicines they consume. Conclusion: An important aspect of herbal medicine is the correct, timely, and integrated communication of emerging data on risk as an essential part of pharmacovigilance, which could actually improve the health and safety of patients. This calls for improved collaboration between traditional practitioners and modern healthcare professionals, researchers, and drug regulatory authorities. In addition, there is a need for an adverse drug reaction reporting system to facilitate the collection, monitoring, and evaluation of adverse drug events

    Verifying a medical protocol with temporal graphs: The case of a nosocomial disease

    Get PDF
    Objective: Our contribution focuses on the implementation of a formal verification approach for medical protocols with graphical temporal reasoning paths to facilitate the understanding of verification steps. Materials and methods: Formal medical guideline specifications and background knowledge are represented through conceptual graphs, and reasoning is based on graph homomorphism. These materials explain the underlying principles or rationale that guide the functioning of verifications. Results: An illustration of this proposal is made using a medical protocol defining guidelines for the monitoring and prevention of nosocomial infections. Such infections, which are acquired in the hospital, increasemorbidity andmortality and add noticeably to economic burden. An evaluation of the use of the graphical verification found that this method aids in the improvement of both clinical knowledge and the quality of actions made. Discussion: As conceptual graphs, representations based on diagrams can be translated into computational tree logic. However, diagrams are much more natural and explicitly human, emphasizing a theoretical and practical consistency. Conclusion: The proposed approach allows for the visualmodeling of temporal reasoning and a formalization of knowledge that can assist in the diagnosis and treatment of nosocomial infections and some clinical problems. This is the first time that one emphasizes the temporal situation modeling in conceptual graphs. It will also deliver a formal verification method for clinical guideline analyses

    An ontological view in telemedicine.

    Get PDF
    The verification and validation of information system models impact on the adequacy and appropriateness of using the value of telemedicine services for continuously optimizing healthcare outcomes. We have defined a methodology to help the modeling and rigorous analysis of the requirements of information systems in telemedicine. On one hand, this methodology will be based on a formal representation of requirements (systemic, generic domain, etc.) within a knowledge base that will be a requirements repository. On the other hand, this methodology will use conceptual graphs for the formalization of ontology of activities and the production of arguments related to the formal verification of models built from this ontology. We describe an example illustrating the engagement of conceptual graph procedures to model the contextual situations in the telemedicine development. We also discuss the way in which ethical issues will actually take place in telemedicine applications

    Systemic modeling in telemedicine

    Get PDF
    The complexity of the health care system is a particularly notable framework for the development of telehealth and telemedicine. It is therefore necessary to try to answer the relevant question that can be summarized broadly as ‘‘How to manage this complex system?’’ We will discuss here the relations between system engineering and telehealth, or more specifically how systems engineering can be applied in the design of a telehealth system, and what benefits it can bring in its development. This naturally leads us to think of methods you can use to understand the difficulty of decision-making and the conceptual perspectives. It has been an accepted fact that this first requires modeling, i.e. to construct a representation of the perceived reality through symbols and relevant rules, then to verify or validate in absolute terms this representation, model, so as to improve or be able to use it. The importance of this modeling and the rigorous analysis of the requirements of telemedicine systems are even more apparent since the recognition of the generic representation declined in two meta-models: the first covers the activities of teleconsultation, teleexpertise and teleassistance; the second concerns telemonitoring

    Analysis reuse exploiting taxonomical information and belief assignment in industrial problem solving

    Get PDF
    To take into account the experience feedback on solving complex problems in business is deemed as a way to improve the quality of products and processes. Only a few academic works, however, are concerned with the representation and the instrumentation of experience feedback systems. We propose, in this paper, a model of experiences and mechanisms to use these experiences. More specifically, we wish to encourage the reuse of already performed expert analysis to propose a priori analysis in the solving of a new problem. The proposal is based on a representation in the context of the experience of using a conceptual marker and an explicit representation of the analysis incorporating expert opinions and the fusion of these opinions. The experience feedback models and inference mechanisms are integrated in a commercial support tool for problem solving methodologies. The results obtained to this point have already led to the definition of the role of ‘‘Rex Manager’’ with principles of sustainable management for continuous improvement of industrial processes in companies

    Using conceptual graphs for clinical guidelines representation and knowledge visualization

    Get PDF
    The intrinsic complexity of the medical domain requires the building of some tools to assist the clinician and improve the patient’s health care. Clinical practice guidelines and protocols (CGPs) are documents with the aim of guiding decisions and criteria in specific areas of healthcare and they have been represented using several languages, but these are difficult to understand without a formal background. This paper uses conceptual graph formalism to represent CGPs. The originality here is the use of a graph-based approach in which reasoning is based on graph-theory operations to support sound logical reasoning in a visual manner. It allows users to have a maximal understanding and control over each step of the knowledge reasoning process in the CGPs exploitation. The application example concentrates on a protocol for the management of adult patients with hyperosmolar hyperglycemic state in the Intensive Care Unit
    corecore